A → BC
, where A
, B
, and C
are non - terminals. 2. A → a
, where A
is a non - terminal and a
is a terminal. Converting a context - free grammar to Chomsky Normal Form is an important task as it simplifies many algorithms related to parsing and analyzing context - free languages. In this blog post, we will explore how to implement a Chomsky Normal Form converter in Java.A context - free grammar (G=(V, T, P, S)) is defined by:
As mentioned earlier, in CNF, every production rule is either of the form A → BC
or A → a
. This form eliminates unit productions (productions of the form (A\rightarrow B) where (A,B\in V)) and productions with more than two non - terminals on the right - hand side.
The general steps to convert a CFG to CNF are:
import java.util.*;
// Represents a production rule in the grammar
class Production {
String left;
String right;
public Production(String left, String right) {
this.left = left;
this.right = right;
}
@Override
public String toString() {
return left + " -> " + right;
}
}
// Represents a context - free grammar
class Grammar {
Set<String> nonTerminals;
Set<String> terminals;
List<Production> productions;
String startSymbol;
public Grammar(Set<String> nonTerminals, Set<String> terminals, List<Production> productions, String startSymbol) {
this.nonTerminals = nonTerminals;
this.terminals = terminals;
this.productions = productions;
this.startSymbol = startSymbol;
}
// Method to convert the grammar to CNF
public Grammar convertToCNF() {
// Step 1: Eliminate the start symbol from the right - hand side
String newStart = "S0";
List<Production> newProductions = new ArrayList<>();
newProductions.add(new Production(newStart, startSymbol));
newProductions.addAll(productions);
// Step 2: Eliminate epsilon - productions
// (This step is not fully implemented here for simplicity)
// Step 3: Eliminate unit productions
// (This step is not fully implemented here for simplicity)
// Step 4: Break long productions
List<Production> finalProductions = new ArrayList<>();
for (Production prod : newProductions) {
if (prod.right.length() > 2) {
String[] symbols = prod.right.split("");
String prevNonTerminal = prod.left;
for (int i = 0; i < symbols.length - 2; i++) {
String newNonTerminal = "X" + i;
finalProductions.add(new Production(prevNonTerminal, symbols[i] + newNonTerminal));
prevNonTerminal = newNonTerminal;
}
finalProductions.add(new Production(prevNonTerminal, symbols[symbols.length - 2] + symbols[symbols.length - 1]));
} else {
finalProductions.add(prod);
}
}
Set<String> newNonTerminals = new HashSet<>(nonTerminals);
newNonTerminals.add(newStart);
return new Grammar(newNonTerminals, terminals, finalProductions, newStart);
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("Non - Terminals: ").append(nonTerminals).append("\n");
sb.append("Terminals: ").append(terminals).append("\n");
sb.append("Productions:\n");
for (Production prod : productions) {
sb.append(prod).append("\n");
}
sb.append("Start Symbol: ").append(startSymbol).append("\n");
return sb.toString();
}
}
public class ChomskyNormalFormConverter {
public static void main(String[] args) {
Set<String> nonTerminals = new HashSet<>(Arrays.asList("S", "A", "B"));
Set<String> terminals = new HashSet<>(Arrays.asList("a", "b"));
List<Production> productions = new ArrayList<>();
productions.add(new Production("S", "AB"));
productions.add(new Production("A", "aA"));
productions.add(new Production("B", "bB"));
String startSymbol = "S";
Grammar grammar = new Grammar(nonTerminals, terminals, productions, startSymbol);
System.out.println("Original Grammar:");
System.out.println(grammar);
Grammar cnfGrammar = grammar.convertToCNF();
System.out.println("Grammar in CNF:");
System.out.println(cnfGrammar);
}
}
convertToCNF
method performs the conversion to CNF.Converting a context - free grammar to Chomsky Normal Form is a fundamental task in formal language theory. Implementing a CNF converter in Java can be challenging due to the multiple steps involved in the conversion process. However, by understanding the core concepts and following best practices, it is possible to create a robust and efficient converter. The provided Java code serves as a starting point for implementing a full - fledged CNF converter.
A1: Many parsing algorithms, such as the CYK algorithm, require the input grammar to be in CNF. CNF also simplifies the analysis of context - free languages.
A2: Yes, the conversion process often introduces new non - terminals, especially when breaking long productions.
A3: No, the CNF of a grammar is not unique. Different sequences of conversion steps can lead to different CNFs for the same grammar.